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This research proposes a reliability-based topology optimization (RBTO) using the finite

element method. RBTO is a topology optimization based on probabilistic (or reliability) con-

straints. Young’s modulus, thickness, and loading are considered as the uncertain variables and

RBTO is applied to static and eigenvalue problems. The RBTO problems are formulated and a

sensitivity analysis is performed. In order to compute probability constraints, two methods —

RIA and PMA — are used. Several examples show the effectiveness of the proposed method by

comparing the classical safety factor method.

Key Words : Reliability-based Design Optimization (RBDO), Topology Optimization,

Reliability-based Topology Optimization (RBTO), Uncertainty

Nomenclature
a(-,+): Strain energy bilinear form
d (+,+) Kinetic energy bilinear form
/(+) : Load linear form

C . Elasticity tensor

Cee © Admissible rigidity tensors

E > Young’s modulus of the given isotropic
material

G . Limit state function (performance func-
tion)

F . Force

P . System probability for the success

P, . Target probability for the success

t . Thickness

X - Random variable (Uncertain variable)

y . Eigenvector

Z . Space of kinematically admissible dis-

placement fields
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Bs . System reliability index for the success

B . Target reliability index for the success

¢ . i** Eigenvalue of the system

fn: . i natural frequency of the system

v . Poisson’s ratio of the given isotropic ma-
terial

7 ©i*™ density function (design variable)

1. Introduction

The goal of probabilistic optimization is to
consider the variations of performances which are
caused by uncertainties, as these uncertain vari-
ables have variances on certain design points.
In deterministic optimization, these uncertainties
are not considered. Thus, deterministic optimum
designs can be unreliable with regard to design
failures.

In probabilistic optimization, cost minimiza-
tion and bringing probabilistic constraints on
target should be done simultaneously. Consider-
able research on probabilistic optimization has
been done in order to improve the quality of a
product by minimizing the effects of variation.
The main difference between the deterministic
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optimization and RBDO are their constraints,
as reliability-based design optimization (RBDO)
(Thanedar and Kodiyalam, 1992 ; Chandu and
Grandhi, 1995 ; Haldar and Mahadevan, 2000)
has the same objective as deterministic optimi-
zation. However, in RBDO, probabilistic con-
straints are formulated so as to construct ap-
proximated linear (or quadratic) functions to
closely represent the nonlinear limit state func-
tions for the reliability index (or safety index)
calculation and optimization by using the appro-
priate transformations.

Topology optimization (Bendsoe and Sigmund,
2003) is mostly used for the initial design of
products, while other conventional methods such
as sizing or shape/configuration optimization
focus on improving the current design. Since
topology optimization was introduced a decade
ago, copious research has been done in the fields
of engineering and mathematics. Recently, to-
pology optimization has been applied to multi-
physics fields such as MEMS (micro-electro-
mechanical systems) and practical industrial prob-
lems.

In this research, a reliability-based topology
optimization (RBTO) using the finite element
method is proposed. RBTO is a topology optimi-
zation based on probabilistic (or reliability) con-
straints. Young’s modulus, thickness, and load-
ing are considered as the uncertain variables. A
majority of researchers use the reliability index
as a probabilistic constraint in RBDO. This ap-
proach is called the reliability index approach
(RIA). Recently, a performance measure approach
(PMA) (Tu et al., 1999 ; 2001) has been proposed
for RBDO in order to evaluate the probabilistic
constraint in an inverse reliability analysis which
is consistent with the conventional RIA. The two
methods, RIA and PMA, are used in order to
compute the probability constraints, as they are
both representative analysis methods of prob-
abilistic constraints in RBDO.

RBTO is then applied to static and eigenvalue
problems to show the effectiveness of the pro-
posed method. The limit state function is linearly
approximated at each iteration in order to evalu-
ate the probabilistic constraints. This approxima-

tion method is called the first-order reliability
method (FORM), which is widely used in RBDO
research.

This paper consists of six parts. First, the
general formulation of topology optimization is
presented. Then, the efficient methodology for
evaluating probabilistic constraints is given and
RBTO is formulated in the following chapter.
Next, the sensitivity analysis of RBTO is explain-
ed. For the implementation, a commercial opti-
mizer, DOT, is used as an optimizer and a com-
mercial FEA code, ANSYS, is used as an an-
alyzer. For reliability and sensitivity evaluation,
subroutines are developed by using the Visual
C++ language. ANSTOP, an in-house code for
topology optimization based on ANSYS, is used
for pre- and post-processing. Some numerical
examples are then presented. The summary, con-
clusion, and recommendations are given in the
final chapter.

2. Formulation of Topology
Optimization

The purpose of topology optimization is to find
the optimal layout of a structure within a spec-
ified region. The only known quantities in the
problem are the applied load, the possible sup-
port conditions, the volume of the structure to be
used as well as some additional design restric-
tions, such as the location and size of the pre-
scribed holes. In this problem, the physical size,
shape and connectivity of the structure are un-
known. Thus, the topology, shape, and size of the
structure are represented by a set of distributed
functions defined on a fixed design domain, rath-
er than by the standard parametric functions.

2.1 Formulation of topology optimization for
static problems
The general set-up for static problems is de-
scribed by the following situation. Consider a
mechanical element as a body occupying a do-
main, 27, which is a part of a larger reference
domain, £2, in R% The reference domain R is
chosen so as to allow for the definition of appli-
ed loads and boundary conditions. By referring
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to the reference domain £2, we can define the
optimal choice of elasticity tensor, C(x) *, that is
variable over the domain. By introducing the
energy bilinear form, ¢(z, z), which is the inter-
nal virtual work of an elastic body at equilibrium,
z, and arbitrary virtual displacement, z, and the
load linear form, /(z), the minimum displaceme-
nt (maximum local stiffness) problem takes the

form :
Minimize ¥ (z)
Subject to a(z, z)=1(z), for all zE€Z (1)
CeCuu

where, ¥ (z) is the objective function, such as
displacement, compliance. Z denotes the space of
kinematically admissible displacement fields.

a(z,i)Z'/;e(z) TCx) e(z) dQ (2)
l(i)Z_/S;fTidQ—Ffp t7zds (3)

where, C(x) is the elasticity tensor, and the equi-
librium equation is written in its weak, variation-
al form. f is the body force, and t is the boundary
traction on the traction boundary, I7.

In Eq. (2), the component of the linearized
strain, €;;(z), is:

1 {0z, 0z
€ii(2) T2 < 0x; + ox: > 4)

where, z; is the displacement component of the
1™ coordinate direction, and x; is the ™ coordi-
nate.

A point with material A point with no material

] i .
- 4

™ Q \ N

Fig. 1 Generalized topology optimization problem

In Eq. (1), Caq refers to the set of admissible
rigidity tensors for the design problem. With
regards to topology design, Cgsq consists of all
rigidity tensors of a given isotropic material and
zero properties elsewhere, the limit of resources
/!;m 1dQ<V. Figure 1 shows
the general topology optimization problem.

being expressed as

2.2 Formulation of topology optimization for

eigenvalue problems

Eigenvalue optimization is a problem of par-
ticular interest in structural design and the to-
pology optimization for this type of problem has
been widely used. Eigenvalue structural optimi-
zation problems are typically formulated where
the design variables include the constitutive ten-
sors that characterize material properties, as static
problems. In general Eigenvalue optimization, the
objective is either maximizing or minimizing a
certain eigenvalue of the structure in free vibra-
tion.

Researchers commonly consider a design prob-
lem in two- or three-dimensional elasticity where
the elastic properties of the medium are repre-
sented by the constitutive tensor C. This design
process maximizes or minimizes a certain eigen-
value of the structure.

The general formulation for an eigenvalue
problem is as follows :

Minimize ;

Subject to aly, y)=¢d(y,y),
for all yeZ (5)
CeCaa

where, &;=w3=4r%f% is the specified eigenvalue
of the system, and y is the eigenvector for the
eigenvalue, &;.

The kinetic energy bilinear form, d(y, y), is
written as :

d(y, §)= [ oy"yde (©)
where, o is the density of the structure.

2.3 Density method
Homogenization and density methods are pop-
ular methods of solving topology optimization
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problems. In this research, the density method is
used. The design problem in the density method
can be formulated as a sizing problem by modi-
fying the stiffness matrix so that it continuously
depends on an artificial density-like function.
This function is then regarded as the design vari-
able. However, the primary requirement for this
formulation is that the optimization results in
designs that consist almost entirely of regions
of material or no material. This means that the
intermediate values of this artificial density func-
tion should be penalized in a manner analogous
to other continuous optimization approximations
of 0-1 problems. Therefore, the density method
typically defines the relationships between the
design variables and the materials as :

7(x) EL>(Q)

/{;v(x)dgsV;OSy(x)SI,xEQ

where, p is the penalization factor, 7 is the density
function, and L*(£2) is the essentially bounded
function (Lebesgue-measurable function). The
penalization factor used in this paper is 3 like the
conventional structural cases. C° stands for the
isotropic material property of the given design,
which is defined as :

lv 0

E 1 0
C=A | s, ®

00 3

E and v are Young’s modulus and Poisson’s
ratio of the given isotropic material.

Moreover, the topology designs not only ex-
hibit dependence on the value of the penaliza-
tion factor, p, but also on the finite element mesh
applied. Nevertheless, because the density method
can construct acceptable results and it is easy to
apply, this method is widely used.

3. Formulation of Reliability-Based
Topology Optimization

In this research, the minimization of volume is

the objective function of Reliability-based To-
pology Optimization (RBTO). A displacement
and a first Eigenvalue are considered as the
limit-state function for the static and Eigenvalue
problems, respectively. Design variables are the
density functions, 7;, in each finite element.

Young’s modulus, thickness, and loading are
considered as uncertain variables. All uncertain
variables are assumed to be normal random vari-
ables.

3.1 Formulation of RBTO for static prob-
lems
The general form of RBTO for static problems
is described as follows :

Find the design variable vector 7= (71, 72, ***,
7n) such that

Minimize Total Volume V (7,)

Subject to Ps(X)=P[G(y, X;)]1>P (9)
0<7:<1
i=1, -, ndv and j=1, 2, 3

where

G:_w"i"ﬁmaxzo <10>
y=2(%)= [ §(x—1)2(x) dQ (11)

¥ is the displacement at an isolated point, %,
and § is the Dirac-Delta function. Xj is the j*
uncertain variable. The limit-state, Eq. (10), im-
plies that if the displacement ¥ is larger than the
limit value ¥max, the system fails.

Then, using the Reliability Index Approach
(RIA) and Performance Measure Approach (PMA)
Eq. (9) can be formulated in two ways :

For RIA,
Minimize Total Volume V (7;)
Subject to Bs(7:, X;) =B
when G(X)=0
for each evaluation (12)
i=1, -, ndv and j=1, 2, 3
For PMA,
Minimize Total Volume V (7;)

Subject to G*(7:; X;) =0
when Bs=[5:
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for each evaluation (13)
0<7p<1
=1, -+, ndv and j=1, 2, 3

where, fs is system reliability index for the suc-
cess and B is target reliability index for the
success.

3.2 Formulation of RBTO for eigenvalue
problems
The general form of RBTO for eigenvalue
problems is the same as Eq. (9). Also, Egs. (12)
and (13) can be used for RIA and PMA in
eigenvalue problems. The limit-state function, G,
is defined as:

G:fnl_fnﬂn20 <l4)

where, fn1 is the first natural frequency of the
system. As in the static problems, Eq. (14) im-
plies that if the first natural frequency is smaller
than the limit value, fmn, the system fails.

4. Design Sensitivity Analysis (DSA)
of RBTO

2.1 Design sensitivity analysis of probabilis-

tic constraints

Continuum sensitivity analysis is used in this
research to calculate the sensitivity of the per-
formance. Since a topology optimization problem
generally deals with thousands of design vari-
ables, the adjoint variable method (AVM) (Haug
et al., 1986) is useful. AVM requires calculations
depending on the number of performances. Con-
versely, a direct method, such as the finite differ-
ence method, needs an equal number of calcula-
tions to the number of design variables.

For RIA, a sensitivity analysis of the reliability
index is needed. An approximated method can be
obtained from the definition of the reliability
index :

p—te _ G(X)

Jj=1

(15)

Therefore, the design sensitivity of the reliability
index is:

B_0 6
o Oy 2(;7%)205‘
(N ey 55 4)
%(887)%)‘75‘ (16)
AP
520 i -om

3

=1

For PMA, the sensitivity evaluation is much
easier than in RIA because the probability con-
straint of PMA is simply G(X) when B=23..
Therefore, the design sensitivity of PMA be-
comes :
aG* _ 0
on: 0

G(X) lo=pe (17)

4.2 DSA for static problems
For the static case, the structural equation is
written as :

ao(z, 2) =1o(z) (18)

The displacement at an isolated point, £, is con-
sidered as a performance measure.

y=2(8)= [ Sc—2)ztd@  (19)
The material derivative of ¥ is:
= Sc—2)zde (20)
The adjoint equation is written as :
ae(A, A) =[Q §(x—%) AdQ for all AEZ (21)

The design sensitivity expression is:

=15 (A) —ae(z, A)

=—do(z, A) (22)

where, A is the solution of the adjoint equation.

Using Eq. (22), the derivatives of G with re-
spect to the three uncertain variables, which are
Young’s modulus, E, the thickness, #, and a
single force, F', are derived as:
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g)% :g%:_<_/ ¢ gg adﬁ) (23)
Z% /; sTEead.QZ% ao(z )
g)% =9G__(-f ¢ EeidA ) e

:%./5; eTEEAd.Q:% ago(z, A)

These equations are valid for the linear system.

Then, the derivatives ofﬁ with respect to the

0X;

design variables, 7;, are derived as:

G _ 1 0 b
X~ E op ' A ="p, a2 ) (26)
FG _1 0

1 9 __ b
% 1 g @z A ~ao(z A (27)

G _ 9 <&>: 0 <_i>:_i 00
87;i8X3 (9771' oF (9971' F F 3971' (28)
=~ aa(a. A) = a0z X

These sensitivity equations are validated by the
finite difference method.

4.3 DSA for eigenvalue problems
For the eigenvalue problem, the structural
equation is:

ao(y, y)=CUdo(y, y) for all yEZ (29)

Since the eigenvector y is orthonormal relative to
the mass matrix, a normalizing condition must be
used to uniquely define the eigenvector. In this
case, the normalizing condition is do(y, y) =1.
The bilinear form, do(y, ¥ ), represents the
mass effect in vibration problems. In the case of a
simple eigenvalue, the eigenvalue ¢ is differenti-
able, as is the corresponding eigenfunction, y.
The first-order sensitivity of Eq. (29) is:

lao(y, ¥)1'=0da(y, y) +¢lde(y, ¥) I 3

0)
C=4n’fs

where

df=4n*-2fn* dfn

dfa_ 1 dt
dX 8r*fn, dX

Since Eq. (30) holds for all yEZ, this equation
may be evaluated with y=y. Using the nor-
malizing condition :

=laely, y)'—¢lde(y, ¥) I (31)

Using Eq. (31), the derivatives of G with respect
to the uncertain variables are derived as:

0G _0fs_ 11 .o
X, OoE 8r’f, E @V

(32)

Then, the derivatives of with respect to the

oG
0X;
design variables, 7;, are derived as:
G _ 1 1 9 2o(y. 3)
n:0X: 87°fn E op VY
_ 1 b
=377, Em aa(y, y)

(33)

4.4 DSA for total volume
The objective function, the total volume, can be
written in its discretized form as:

V:é 7:Aqt; (34)

and the sensitivity is:

oV _
07]i

Ait: (35)

5. Numerical Examples

5.1 Static problem with 1 uncertain variable

The first example is a cantilever plate (16X 10)
as shown in Fig. 2. The limit-state function is the
displacement at Point A which should be smaller
than 3.0. The cantilever plate is modeled as two-
dimensional shell elements. One end is fixed and
the force is applied at Point A. The plate is
meshed into 640 elements. The uncertain variable
is Young’s modulus. The uncertain variable has
10% variance of the mean value and is assumed to
be normally distributed. The target reliability
index, B, is 3.0.
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E=207e+05
v=03
1=0.05

F =300

Fig. 3 Deterministic topology optimization (DTO-
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Static) Fig. 4 RBTO with 1 uncertainty (Static)
Table 1 Comparison between DTO and RBTO (Static Case 1)
Objective Deflection L
R
(Volume %) at the mean value eliability
DTO 22.57% 2.99957 0.00159
RBTO with RIA 31.61% 2.10007 3.0005
RBTO with PMA 30.45% 2.10001 2.9998

The deterministic topology optimization (DTO)
is written as:

Minimize Total Volume (36)
Subject to G=—19+3.00=>0
and the optimal result is shown in Fig. 3.
If RIA is applied, the RBTO problem is written
as:

Minimize Total Volume

3
Subject to $s=3 when Gz—lﬁ-l—?r.OOZO< )

and the optimal result is shown in Fig. 4(a).
If PMA is applied, the RBTO problem is writ-
ten as:

Minimize Total Volume

38
Subject to G=—19+3.00=0 when ,6’323( )

and the optimal result is shown in Fig. 4(b).

A summary for the static problem with one
uncertain variable is shown in Table 1. The ob-
jective, the used volume, of the Deterministic To-
pology Optimization (DTO) is smaller than the
results of RBTO. However, DTO has poor reli-
ability, 4=0.00159, which means that the opti-
mum of DTO has about a 50% failure probabi-
lity. When the reliability is considered into this
design, the volume used is more than the DTO
required to satisfy the probabilistic constraint.
This is because the feasible region becomes
smaller due to the distribution of the uncertain
variable. RBTO results show that the proposed
method achieves the target reliability index. Even
though the shapes of Fig. 4(a) and Fig. 4(b)
from RIA and PMA are different, the perfor-
mances (volume and deflection) of the optimal
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Table 2 Comparison between DTO and RBTO (Static Case 2)

Objective Deflection Reliabilit
(Volume %) at the mean value y
DTO 22.57 % 2.99957 0.00159
RBTO with RIA 35.18% 1.73663 2.99970
RBTO with PMA 34.70% 1.73609 3.00142
: .
- ) - ot
S i e A o
3 w %
% o e .o =
o T =
o' - o
% %

Fig. 5 RBTO with 3 uncertainties (Static)

models from the two methods are quite similar.

5.2 Static problem with 3 uncertain vari-

ables

The next example has the same FE model as
the first example. However, two more uncertain
variables, thickness and loading, are considered
as uncertain variables. Again, all uncertain vari-
ables have 10% variance of their mean values and
are assumed to be normally distributed. The
maximum allowable deflection is 3.0 and the
target reliability index, A, is 3.0. The formula-
tions of RBTO are the same as in the previous
example.

The optimum results of RBTO are shown in
Fig. 5.

The optimum shapes depicted in Fig. 5 are
different from previous results. Because of the
increased number of uncertain variables, a more
robust solution is obtained in order to satisfy the
target reliability. Also, the used volumes are much
larger than in the one uncertain variable case.

The trends for the solutions of RIA and PMA
are similar for the same conditions. However,
there is an important difference. PMA always
finds a solution, but RIA sometimes fails to find
an optimum due to the divergence problem.

Additionally, a complex sensitivity evaluation of
the reliability index, (3, is required in the case of
RIA.

From Table 2, we can find that the results of
RBTO have a larger volume than DTO. A DTO
model using more volume can be more reliable.
To check the efficiency of RBTO, a new DTO
problem is formulated as:

Minimize Y4 (39)

Subject to V <35.63%
where, V is the used volume in optimal design.
The limit value of 35.63% is determined from
the results of RBTO and this is a slightly larger
volume than the RBTO results. This DTO prob-
lem is from the safety factor concept.

The optimal solution of Eq. (39) is shown in
Fig. 6.

Table 3 shows the comparison of four optimal
designs. DTO result with a large volume has a
better reliability than the initial DTO results,
still but has a smaller reliability than the target
value. Also, the deflection of the DTO model is
larger than the RBTO models. Therefore, the
RBTO method can give better designs more effi-
ciently than DTO by using the safety factor con-
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Table 3 Comparison between DTO and RBTO

Objective Deflection Reliability
(Volume %) at the mean value
DTO 22.57% 2.99957 0.00159
RBTO with RIA 35.18% 1.73663 2.99970
RBTO with PMA 34.70% 1.73609 3.00142
E;go (rvezi‘;g‘e used equal to 35.60% 2.09118 2.02320

Fig. 6 DTO with the volume equal to RBTO result
(Static)

cept. Additionally, an important fact here is that
RBTO can effectively obtain a design which sat-
isfies the target probability, whereas the safety
factor method is unable to estimate this probabil-

1ty.

5.3 Eigenvalue problem with 1 uncertain

variable

The last example is the eigenvalue problem.
The objective is to minimize the volume, and the
limit-state function is the first natural frequency,
which should be larger than 142 Hz. The eigen-
value example model is shown in Fig. 7. A 70 X
10 finite element model with shell elements is
used, and only x and y direction movements are
allowed.

The uncertain variable is Young’s modulus. As
in prior cases, the uncertain variable has 10%
variance of the mean value and it is assumed to
be normally distributed.

Initially, the deterministic optimization is writ-
ten as:

Minimize Total Volume

40
Subject to G=fn;—142.0>0 (40)

Fig. 7 Eigenvalue Problem Model

Fig. 8 Contour Plot and Contour Line Plot of DTO
(Eigenvalue)

The optimal result is shown in Fig. 8 as contour
and contour line plots. A contour line plot is
obtained by intersecting the 0.5 density threshold.

If RIA is applied, the RBTO problem is written
as:

Minimize Total Volume

1
Subject to Bs=>3 when G=j,—142.0=0 (a1)

If PMA is applied, the RBTO problem is written
as:

Minimize Total Volume

42
Subject to G=fn1—142.0=>0 when Bs=3 (42)

The RBTO results using RIA and PMA are given
in Figs. 9 and 10.

An additional DTO problem that has a 71%
volume limit is solved from the safety factor
concept. The 71% limit value is from the used
volume in RBTO, and the result is shown in
Fig. 11.

Table 4 shows results of DTO and RBTO. As
in the static case, the last row is the result of DTO
with the same volume as RBTO. Also in this case,
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Table 4 Comparison between DTO and RBTO (Eigenvalue Case)

Objective Ist Natural Freq Reliability
(Volume %) at the mean value
DTO 50.574% 142.023 0.003
RBTO with RIA 70.065% 169.712 2.999
RBTO with PMA 71.689% 169.741 3.002
E;?Ownh the same volume as 70.881% 168.488 5897

Fig. 10 RBTO with uncertainty (Eigenvalue : PMA)

Fig. 11

DTO with the same volume as RBTO
(Eigenvalue Case)

DTO could not give better results than RBTO,
although the same volume was used. In this ex-
ample, the reliability of RBTO is slightly better,
however, the safety factor method was unable to
assess the probability of the performance. RIA
and PMA gave almost the same results in this
case.

6. Conclusions

In this article, a reliability-based topology
optimization (RBTO) is proposed and a RBTO
program is implemented by using RIA and PMA

approaches. The objective function of RBTO is
the minimization of the volume. To estimate the
failure probability, a displacement and a first
eigenvalue are considered as the limit-state func-
tion for static and eigenvalue problems, respec-
tively.

Young’s modulus, thickness, and loading are
considered as the uncertain variables. All uncer-
tain variables are assumed to be normally dis-
tributed random variables. To calculate the prob-
ability of the constraints, the first-order reliability
method (FORM) is used. In FORM, the limit
state function is linearly approximated at each
iteration.

2-D problems are solved in order to show the
effectiveness of the proposed RBTO. The pro-
posed method gave results that are more reliable
with respect to uncertainties. Considering the
probability constraints, it is possible to make
robust and low-cost products. The original DTO
result gives only a 50% success rate probability,
but the proposed RBTO can give the requested
solution under the condition of several uncertain-
ties. Obviously, the statistically improved design
uses more material or volume than the design
from DTO. However, even if a DTO problem uses
the same volume as RBTO, the DTO solution is
not as reliable as RBTO.

Two different approaches, RIA and PMA, were
adopted for the RBTO formulation. These two
approaches gave slightly different optimal to-
pologies, but their trends were similar for the
same parameter conditions. However, in every
instance, PMA has the better convergence to find
an optimum than RIA. Additionally, RIA re-
quires a complex sensitivity evaluation of the
reliability index, 8.
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